
Archimedes: Efficient Query Processing over

Probabilistic Knowledge Bases

Yang Chen

⇤
, Xiaofeng Zhou

⇤
, Kun Li

†
, Daisy Zhe Wang

⇤
*
Department of Computer and Information Science and Engineering, University of Florida

†
Google, Inc.

ABSTRACT
We present the ARCHIMEDES system for efficient query
processing over probabilistic knowledge bases. We de-
sign ARCHIMEDES for knowledge bases containing in-
complete and uncertain information due to limitations
of information sources and human knowledge. Answer-
ing queries over these knowledge bases requires effi-
cient probabilistic inference. In this paper, we describe
ARCHIMEDES’s efficient knowledge expansion and query-
driven inference over UDA-GIST, an in-database uni-
fied data- and graph-parallel computation framework.
With an efficient inference engine, ARCHIMEDES pro-
duces reasonable results for queries over large uncertain
knowledge bases. We use the Reverb-Sherlock and Wik-
ilinks knowledge bases to show ARCHIMEDES achieves
satisfactory quality with real-time performance.

1 Introduction
Recent years have seen a drastic rise in the construction
of web knowledge bases (KBs), e.g., DBPedia, Free-
base, NELL, Probase, and YAGO. Meanwhile, due to
the uncertainty of information extraction algorithms and
the limitations of human knowledge, current knowledge
bases are still incomplete and uncertain, resulting in sub-
optimal query results [5, 34]. The objective of this pa-
per is to extend our previous research on knowledge ex-
pansion [5], query-driven inference [35], and the UDA-
GIST computation framework [17] to build a prototype
knowledge base system, ARCHIMEDES, to support effi-
cient knowledge expansion with uncertain Horn clauses
and query-driven probabilistic inference.
Knowledge Expansion. ARCHIMEDES applies large sets
of Horn clauses to derive implicit knowledge from exist-
ing knowledge bases. The rules are constructed by state-
of-the-art first-order mining algorithms [6, 4, 9, 25]. It
employs a novel relational model [5] to apply batches of
inference rules using relational operations and performs
probabilistic inference by query-driven MCMC [18].
Query-Driven Inference. Observing that queries are of-
ten relevant to small parts of the knowledge graphs [26,
30], ARCHIMEDES applies MCMC only to the K-hop

networks to achieve real-time performance. Specialized
MLN inference algorithms [10, 14, 23] can improve in-
ference quality over the K-hop network, but MCMC is
more widely supported by existent big data frameworks,
e.g., UDA-GIST [17] and GraphLab [19].
UDA-GIST. UDA-GIST [17] is an in-database analyt-
ics framework unifying data-parallel and graph-parallel
computation. State-of-the-art big data frameworks sup-
port either data-parallel or graph-parallel computation.
GraphLab [19], for example, supports only graph-parallel
computation; Spark [32, 33] and MapReduce [7], on
the other hand, support only data-parallel computation.
UDA-GIST unifies these two types of parallel computa-
tion in a cohesive scalable system.

We evaluate ARCHIMEDES on Sherlock-Reverb [25,
8] and Wikilink [29]. These datasets contain large-scale,
incomplete, and uncertain knowledge. We compare with
Tuffy [22], the probabilistic inference engine of Deep-
Dive, and GraphLab. We show that ARCHIMEDES pro-
duces competent result with efficient first-order reason-
ing and query-driven inference supported by the UDA-
GIST in-database framework. We demonstrate the sys-
tem with ARCHIMEDESONE [35], an interactive query
interface. All our code and data are available online1.

To summarize, we solve the problem of efficient query
processing in probabilistic knowledge bases with three
novel contributions:
• Knowledge expansion: Derive implicit knowledge
from knowledge bases using large rule sets;
• Query-driven inference: Improve inference perfor-
mance by focusing MCMC on the query variables;
• Efficient computation: Leverage the UDA-GIST uni-
fied data- and graph-parallel computation framework.

We organize the remainder of this paper as follows.
Section 2 describes the overview of ARCHIMEDES sys-
tem design. Sections 3 to 5 describe the system compo-
nents in detail. Section 6 presents experimental evalua-
tion with public knowledge bases. Section 7 discusses
related work, and Section 8 concludes the paper.
1http://dsr.cise.ufl.edu/projects/probkb-web-scale-
probabilistic-knowledge-base.

http://dsr.cise.ufl.edu/projects/probkb-web-scale-probabilistic-knowledge-base
http://dsr.cise.ufl.edu/projects/probkb-web-scale-probabilistic-knowledge-base

Entities E Classes C Relations R Relationships ⇧

Ruth Gruber,
New York City,
Brooklyn

W (Writer) = {Ruth Gruber},
C (City) = {New York City},
P (Place) = {Brooklyn}

BornIn(W , P), BornIn(W , C),
LiveIn(W , P), LiveIn(W , C),
LocateIn(P , C)

0.96 BornIn(Ruth Gruber, New York City)
0.93 BornIn(Ruth Gruber, Brooklyn)

Rules L

1.40 8w 2W 8p 2 P (LiveIn(w, p) BornIn(w, p))
1.53 8w 2W 8c 2 C (LiveIn(w, c) BornIn(w, c))

0.32 8p 2 P 8c 2 C 8w 2W (LocateIn(p, c) LiveIn(w, p) ^ LiveIn(w, c))
0.52 8p 2 P 8c 2 C 8w 2W (LocateIn(p, c) BornIn(w, p) ^ BornIn(w, c))
1 8c1 2 C 8c2 2 C 8w 2W (BornIn(w, c1) ^ BornIn(w, c2)! c1 = c2)

Table 1: Example probabilistic knowledge base constructed from Reverb-Sherlock extractions.

2 Probabilistic Knowledge Bases
A probabilistic knowledge base extends first-order knowl-
edge bases to support uncertain facts and rules. The pri-
mary goal of modeling uncertainty is to represent knowl-
edge mined by probabilistic information extraction al-
gorithms that contain uncertain facts and rules, as illus-
trated by the Reverb-Sherlock KB in Table 1. We for-
mally define a probabilistic knowledge base below [5].

Definition 1. We define a probabilistic knowledge base
to be a 5-tuple �=(E ,C,R,⇧,L), where

1. E = {e1, . . . , e|E|} is a set of entities. Each entity
e 2 E refers to a real-world object.
2. C = {C1, . . . , C|C|} is a set of classes (or types).
Each class C 2 C is a subset of E : C ✓ E .
3. R = {R1, . . . , R|R|} is a set of relations. Each R 2
R defines a binary relation on Ci, Cj 2 C: R ✓ Ci⇥Cj .
We call Ci, Cj the domain and range and use R(Ci, Cj)

to denote the relation with its domain and range.
4. ⇧ = {(r1, w1), . . . , (r|⇧|, w|⇧|)} is a set of weighted
facts (or relationships). For each (r, w) 2 ⇧, r is a tuple
(R, x, y), where R(Ci, Cj) 2 R, x 2 Ci, y 2 Cj , and
(x, y) 2 R; w 2 R is a weight indicating how likely r is
true. We also use R(x, y) to denote the tuple (R, x, y).
5. L = {(F1,W1), . . . , (F|L|,W|L|)} is a set of weighted
clauses (or rules). It defines a Markov logic network.
For each (F,W) 2 L, F is a first-order logic clause,
and W 2 R is a weight indicating how likely F holds.

As in [5], we confine L to Horn clauses with binary
predicates. Horn clauses prove useful in various knowl-
edge base inference tasks [21, 5, 25]. Their similar
structures facilitate efficient inference engines leverag-
ing the KB relational model in Section 3.

Example 1. Table 1 shows an example probabilistic KB
constructed from Reverb [8] extractions and Sherlock [25]
rules. The knowledge base describes the birth place and
city of a writer Ruth Gruber with relations “BornIn,”
“LiveIn,” and “LocateIn.” The extracted facts state that
Ruth Gruber was born in New York City and Brooklyn

with weights 0.96 and 0.93, respectively, assigned by IE
algorithms. The weighted rules infer Ruth Gruber’s liv-
ing place based on his birth place, and a hard rule with
an infinite positive weight states that a person was born
in only one city. ⇤

Br

RG

NY

BornIn BornIn

LiveIn LiveIn

LocatedIn

(a) Knowledge graph. (b) Factor graph.

ID Fact
1 BornIn(Ruth Gruber, New York City)
2 BornIn(Ruth Gruber, Brooklyn)
3 LiveIn(Ruth Gruber, New York City)
4 LiveIn(Ruth Gruber, Brooklyn)
5 LocatedIn(Brooklyn, New York City)

(c) Variables 1-5 in the factor graph (b).

Figure 1: Factor graph representation of the Reverb-
Sherlock knowledge base.

We view a probabilistic knowledge base as a tem-
plate for constructing ground factor graphs [24]. A fac-
tor graph is a set of factors � = {�1, . . . ,�N}, where
each factor �i is a function �i(Xi) over a random vec-
tor Xi indicating the probabilistic correlations among
the random variables in Xi. These factors together de-
termine a joint probability distribution over the random
vector X consisting of all the random variables in the
factors [16]. Factor graphs are visually represented as
graphs. In the graph representation, each node is a fact
Xi (circle) or factor �i(Xi) (square) with variables Xi

as its neighbors. Figure 1(b) shows an example fac-
tor graph representation of the knowledge graph Fig-
ure 1(a). Each factor in Figure 1(b) is defined by a
ground fact, e.g., BornIn(Ruth Gruber, New York City)
with weight 0.96, or a ground rule, e.g., LiveIn(Ruth

Gruber, New York City) BornIn(Ruth Gruber, New
York City) with weight 1.40. We use factor graphs to
describe these correlations among the facts.

In a factor graph � = {�1, . . . ,�N}, the factors to-
gether determine a joint probability distribution over the
random vector X consisting of all the random variables
in the factor graph:

P (X = x) =

1

Z

Y

i

�i(Xi) =
1

Z

exp

X

i

Wini(x)

!
,

(1)
where ni(x) is the number of true groundings of rule
Fi in x, Wi is its weight, and Z is the partition function,
i.e., normalization constant. ARCHIMEDES answers user
queries by computing the marginal probability P (X =

x), the probability distribution of a query node X de-
fined by (1). The computation of marginal probabilities
is called marginal inference in probabilistic graphical
models literature. Exact inference is tractable for only
limited families of graphical models [16], and state-of-
the-art MLN inference engines use sampling algorithms
including Markov chain Monte Carlo (MCMC) and MC-
SAT [24, 23, 22]. Observing the ground factor graphs
of real knowledge bases are large [5] while user queries
often focus on small parts of the knowledge graph [35],
ARCHIMEDES employs a query-driven approach to fo-
cus MCMC on the query nodes to avoid computation
over the entire factor graph.

2.1 System Architecture
To efficiently process queries, we design three key com-
ponents of ARCHIMEDES: an inference engine for ef-
ficient knowledge expansion to derive implicit knowl-
edge from existing KBs [5], query-driven inference to
compute probabilities of the query facts [35], and the
UDA-GIST framework for in-database data-parallel and
graph-parallel analytics [17]. We provide a user inter-
face for load, search, and update queries, as described
in [35]. The system architecture is shown in Figure 2.

�����������������	�
��������������	����

�������������������	������������������
�
��������������	����

������� �!����� ���"�����	�����#��� ��������
�
��������������	�$��

������� �!�	�%� ����������������

�&������ ������� ���' �����������
������� �!�	�������� �#������

���(�	������������

�)���*������������	�%������#��� �*
�%�������� �������&

�+������������������	���(�	�,��������

�-������� �+��������

�-�������� �	��� �����'

Figure 2: ARCHIMEDES System Components.

ARCHIMEDES models facts, rules, and the factor graph
in relational tables. The relational model enables it to
efficiently perform knowledge expansion by joining the
facts and rules tables. The knowledge expansion and
query-driven inference using MCMC exemplify appli-

cations requiring both data-parallel and graph-parallel
computation. They are efficiently supported by the UDA-
GIST in-database analytics framework by unifying the
UDAs from relational databases and GIST from graph
analytics with a shared in-memory state. We describe
the details of each component in Sections 3 to 5.

3 Knowledge Expansion
To efficiently apply the inference rules, we represent
a knowledge base as relational tables. This relational
model is first introduced by ProbKB [5] and proves ef-
ficient in rule mining [4] by applying rules in batches
using join queries. The main challenge with inference
rules is that they have flexible structures. To adapt for
different structures, we define structural equivalence to
divide rules into equivalent classes so that each equiva-
lent class has a fixed table format. In particular, we call
two first-order clauses structurally equivalent if they dif-
fer only in entities, types, and predicates.

Example 2. Consider the following inference rules:
1. isMarriedTo(x, y) isMarriedTo(y, x);
2. isInterestedIn(x, y) influences(y, x) ;
3. influences(x, y) directed(x, z), actedIn(y, z);
4. influences(x, y) worksAt(x, z), worksAt(y, z).
Rules 1 and 2 are structurally equivalent since their only
differences are the predicates (isMarriedTo, influences,
isInterestedIn). Similarly, Rules 3 and 4 are structurally
equivalent. Therefore, we store Rules 1 and 2 in one
table with the columns specifying the predicates of the
head and body, as shown in Table 2 (left). We store
Rules 3 and 4 in Table 2 (right), its columns storing the
head and first, second predicates of the rule body. ⇤

Head Body
isMarriedTo isMarriedTo

isInterestedIn influences

Head Body1 Body2
influences directed actedIn
influences worksAt worksAt

Table 2: (Left) Relational table for rules 1 and 2.
(Right) Relational table for rules 3 and 4.

Based on the relational model, we express the knowl-
edge expansion algorithm as join queries between the
facts and rules tables, one join for each rules table. The
details of the join queries are described in [5]. Our ex-
periments show that applying rules in batches results
in a 200-300 times of speedup over the state-of-the-art
approaches. The result of knowledge expansion is a
ground factor graph � = {�1, . . . ,�N}, where each
factor �i(Xi) represents a ground rule. The factor graph
is modeled by a relational table, the columns storing
predicate IDs of variables X 2 X and weights of the
factors. Performing probabilistic inference on this factor
graph yields marginal probabilities of the query facts.

4 Query-Driven Inference
ARCHIMEDES uses query-driven inference to speed up
MLN inference algorithms by focusing computation on
the query facts. The query-driven inference algorithm is
designed with the UDA-GIST analytics framework [17]
to achieve efficient inference in a relational database sys-
tem. Furthermore, we use K-hop approximation to fo-
cus computation on the query facts.
K-hop approximation. To achieve real-time response,
we approximate the inference by extracting K-hop sub-
networks of the ground factor graph, consisting of nodes
within K hops from the query nodes. The K-hop ap-
proximation is based on the observation that neighbors
of the query nodes have more influence than distant nodes.
In Figure 3(a), for example, to compute the probability
of the central node, we use the 2-hop sub-network in
Figure 3(b) for approximation. To achieve real-time re-
sponse, we use an additional network limit parameter
to control the expansion of K-hop sub-networks as K

increases. In our evaluation, we achieve an 18 times
of speedup compared to inference over the entire factor
graph by choosing K = 2, with an acceptable error of
0.04 in the computed probabilities.

(a) (b)

Figure 3: (a) The original factor graph. (b) 2-hop
network.

UDA-GIST. We use the MCMC algorithms to compute
the probabilities defined by the K-hop network. We op-
timize MCMC on the UDA-GIST in-database analytics
framework [17]: we build the factor graph by relational
operations with User Defined Aggregates (UDAs) and
compute probabilities of query facts by MCMC with
General Iterative State Transition (GIST). The combined
UDA-GIST framework extends relational database sys-
tems to support algorithms requiring both data- and graph-
parallel computation, including MCMC and MC-SAT.
We describe the design of UDA-GIST in Section 5.

5 UDA-GIST
Most major DBMSes support User-Defined Aggregates
(UDAs) for parallel data analytics. UDAs are suitable
for data-parallel analytics where data are naively parti-
tioned and computation is performed on the partitions
in parallel. In the context of query processing over large
probabilistic KB graphs, such data-parallel operators im-
plement efficient propositional KB graph materializa-
tion, subgraph matching, and result generation.

However, UDAs do not support efficient statistical in-
ference algorithms that perform iterative transitions over
a large state, where the state is a graph-like data struc-
ture. The computation is not naively partitioned due to
data dependency within the state (e.g., dependencies be-
tween nodes and edges in a graph) as DBMSes are fun-
damentally data driven and computation is tied to the
processing of tuples. We refer to these iterative process-
ing algorithms as graph parallel algorithms. MCMC and
random walk over large probabilistic graphical graph are
examples of such algorithms. The fundamental ques-
tion is: Can graph-parallel inference algorithms be effi-
ciently implemented in DBMSes?
The General Iterative State Transition (GIST) Oper-
ator. To answer the demand of supporting in-database
graph-parallel analytics, we propose the GIST abstrac-
tion to generalize the GraphLab API [17]. GIST de-
fines four abstract data types to describe state-transition
algorithms: an in-memory state representing the state
space, a task encoding the state transition task for each
iteration, a scheduler responsible for the generation and
scheduling of tasks, and a convergence UDA (cUDA)
imposing the stopping condition of the GIST operations.
An efficient GIST implementation also supports opti-
mizations including (1) asynchronous parallelization of
state transitions, (2) efficient and flexible state imple-
mentation, and (3) code generation.
The UDA-GIST Data Processing Framework. We in-
tegrate the GIST operator into DBMSes with UDAs and
User-Defined Functions [2]. From the relational repre-
sentation of a probabilistic KB graph, SQL queries and
UDAs generate a large in-memory state representing the
propositional KB graph. The GIST operator then runs
parallel inference algorithms on the in-memory state.
The query results are extracted from the converged state
using an independent UDA function. UDA-GIST uni-
fies data-parallel (e.g., graph materialization) and graph-
parallel computation (e.g., inference) into an integrated
in-database analytics framework.

6 Experiments
We evaluate ARCHIMEDES using Reverb-Sherlock [8,
25] Wikipedia KB with 407,247 facts and 30,912 first-
order inference rules, a synthetic knowledge base with
varying numbers of facts and rules ranging from 10K
to 10M, and Wikilinks for cross-document coreference
on UDA-GIST. We run the experiments on a 32-core
machine with 64GB of RAM running Red Hat Linux 4.

6.1 Result of Knowledge Expansion
To evaluate knowledge expansion, we use Tuffy [22]
as the baseline. Figures 4(a)(b) compare performance
of ARCHIMEDES with Tuffy on the synthetic knowl-
edge base with varying numbers of facts and rules. We
see that ARCHIMEDES achieves more than 200 times of

Figure 4: Knowledge expansion results. (a)(b) Performance comparison with Tuffy. (c) Quality improvement
on Reverb-Sherlock.

speedup over Tuffy for 107 facts. The speedup benefits
from the batch application of rules with join operations
supported by the relational knowledge base model.

The precision of the inferred facts is shown in Fig-
ure 4(c). We use semantic constraints and rule clean-
ing to improve precision of the inferred facts [5]. As
shown in the figure, both semantic constraints and rule
cleaning improve precision. The raw Reverb-Sherlock
dataset infers 4800 new correct facts at a precision of
0.14. The precision drops quickly when we generate
new facts since unsound rules and ambiguous entities
result in many erroneous facts. On the contrary, the
precision significantly improves with our quality con-
trol methods: with top 10% rules we infer 9962 facts
at a precision of 0.72; with semantic constraints, we
infer 23,164 new facts at precision 0.55. Combining
these two methods, we are able to infer 22,654 new facts
at precision 0.65 using top 50% rules, and 16,394 new
facts at precision 0.75 using top 20% rules.

6.2 Result of Query-Driven Inference

Figures 5(a)-(c) report the runtime results for query-driven
inference by K-hop approximation with different num-
bers of hops from large, medium, and small clusters. We
see that in all the networks, as the number of hops and
size of the retrieved networks grow, it takes longer for
inference. As a result, query-driven inference achieves a
speedup of more than one order of magnitude compared
to using the entire factor graph for computation. Mean-
while, we observe that the error rate in the computed
probabilities drops to 0.04 with only 3000 neighboring
nodes in the MCMC computation. Thus, query-driven
inference efficiently answers user queries by focusing
computation on the relevant neighbors with acceptable
error rates in the computed probabilities.

6.3 Result of UDA-GIST

We evaluate the performance and scalability of UDA-
GIST by cross-document coreference using the Wikilinks
datasets [29]. The dataset contains about 40 millions
mentions over 3 millions entities. We extract two datasets:
Wikilink 1.5 (first 565 1.5M mentions from the 40M
dataset) and Wikilink 40 (all 40M mentions in the dataset)
from this Wikilink dataset. The Wikilink 40 dataset is 27

times larger than used in the current state-of-the-art [28].
The result is reported in Figures 5(d)(e). For the entire
dataset, the state building takes approximately 10 min-
utes. We run 20 iterations each with 10

11 pairwise men-
tion comparisons. Each iteration takes approximately
1 hour and we see the graph converges at iteration 10
with precision 0.79, recall 0.83 and F1 0.81. Using
our solution, within a manageable 10-hour computation
in a single system the coreference analysis can be per-
formed on the entire Wikilink dataset, 27 times larger
than achieved by the current state-of-the-art [28].

7 Related Work
Knowledge Base Construction. Knowledge bases are
receiving increasing research and industrial interest, e.g.:
DBpedia [1], Freebase [3], NELL [21], ProBase [31],
and YAGO [20]. However, they are often incomplete
and uncertain due to limitations of information sources
and human knowledge. To model the correlations among
uncertain facts, NELL [21] and DeepDive [34] use in-
ference rules. We extend this approach to large rule sets
with similar structures [6, 4, 9, 25] by modeling the rules
as relational tables, enabling the applications of batches
of inference rules with relational operators [5]. Our ap-
proach is scalable; it has been applied to large knowl-
edge bases including Freebase [6, 4].
Probabilistic Inference. To compute the probabilities,
general probabilistic inference algorithms–MCMC [27],
Gibbs sampling [11], belief propagation [12]–or spe-
cialized MLN inference algorithms [10, 14, 23] are vi-
able options. All the inference algorithms benefit from
query-driven inference by avoiding computation on the
entire graph [35, 26, 30]. In ARCHIMEDES, we use
MCMC because of its wide use and existing support in
UDA-GIST [18] and other state-of-the-art big data ana-
lytics frameworks we describe below.
Parallel computing. In recent years, various analytics
frameworks have been developed to facilitate large-scale
data analytics: MADlib [15], Spark [33, 32], MapRe-
duce [7], GraphLab [19], and GraphX [13]. These frame-
works support either data-parallel or graph-parallel com-
putation. For example, the data-driven UDA operations
in MADlib, Spark, and MapReduce provide data-parallel

0 5 10 15
of hops

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
un

tim
e/

s

1e3 (a) Large

0 5 10 15
of hops

0.0

0.5

1.0

1.5

2.0

2.5

R
un

tim
e/

s

1e1 (b) Medium

0 5 10 15
of hops

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

R
un

tim
e/

s

(c) Small

1 3 5 7 9 11 13 15 17 19 21
Time/min

0.6

0.7

0.8

0.9

(d) Wikilink 1.5

1 3 5 7 9 11 13 15 17 19 21
Time/hour

0.4

0.5

0.6

0.7

0.8

0.9 (e) Wikilink 40
Precision Recall F11000 2000 3000

Figure 5: (a)-(c) Performance of query-driven inference. (d)(e) Performance improvement of UDA-GIST com-
pared to GraphLab.

computation, but are inefficient for asynchronous graph-
parallel computation like MCMC. GraphX, built on Spark,
is based on a synchronous computation engine, making
MCMC less efficient than GraphLab [17]. GraphLab,
however, requires sequential graph construction and re-
sult extraction. The UDA-GIST framework improves on
these works by integrating UDA and GIST with a shared
in-memory state, thus unifying data- and graph-parallel
computation frameworks in a DBMS.

8 Conclusion
In this paper, we present ARCHIMEDES for query pro-
cessing over probabilistic knowledge bases. We extend
the state-of-the-art query processing and optimization
techniques to knowledge base systems by knowledge
expansion and query-driven inference, supported by the
UDA-GIST framework. UDA-GIST is an in-database
analytics framework that unifies data-parallel and graph-
parallel computation. We evaluate ARCHIMEDES with
public knowledge bases including Reverb-Sherlock and
Wikilink. We show ARCHIMEDES achieves real-time
performance with satisfactory quality. In future work,
we plan to improve the query processing algorithm and
supporting framework with performance optimizations.
Acknowledgments. We acknowledge the support of NSF
under IIS Award # 1526753, DARPA under FA8750-12-
2-0348-2 (DEFT/CUBISM), and a gift from Google.

9 References
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives.

Dbpedia: A nucleus for a web of open data. In The semantic web.
Springer, 2007.

[2] T. Bain, L. Davidson, R. Dewson, and C. Hawkins. User defined
functions. In SQL Server 2000 Stored Procedures Handbook, pages
178–195. Springer, 2003.

[3] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge.
In SIGMOD. ACM, 2008.

[4] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological
pathfinding. In SIGMOD. ACM, 2016.

[5] Y. Chen and D. Z. Wang. Knowledge expansion over probabilistic
knowledge bases. In SIGMOD. ACM, 2014.

[6] Y. Chen, D. Z. Wang, and S. Goldberg. Scalekb: Scalable learning and
inference in large knowledge bases. The VLDB Journal, 2016.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 2008.

[8] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open
information extraction. In EMNLP, 2011.

[9] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining
in ontological knowledge bases with amie+. The VLDB Journal, 2015.

[10] W. Gatterbauer and D. Suciu. Dissociation and propagation for
approximate lifted inference with standard relational database
management systems. The VLDB Journal, 2016.

[11] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel gibbs
sampling: From colored fields to thin junction trees. In AISTATS, 2011.

[12] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally
parallelizing belief propagation. In AISTATS, 2009.

[13] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In OSDI, 2014.

[14] E. Gribkoff and D. Suciu. Slimshot: in-database probabilistic inference
for knowledge bases. Proceedings of the VLDB Endowment, 2016.

[15] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, et al. The madlib
analytics library: or mad skills, the sql. VLDB, 2012.

[16] D. Koller and N. Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[17] K. Li, D. Z. Wang, A. Dobra, and C. Dudley. Uda-gist: An in-database
framework to unify data-parallel and state-parallel analytics. VLDB, 2015.

[18] K. Li, X. Zhou, D. Z. Wang, C. Grant, A. Dobra, and C. Dudley.
In-database batch and query-time inference over probabilistic graphical
models using uda-gist. The VLDB Journal, 2016.

[19] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning and
data mining in the cloud. VLDB, 2012.

[20] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In CIDR, 2014.

[21] T. Mitchell and et. al. Never-ending learning. In AAAI, 2015.
[22] F. Niu, C. Ré, A. Doan, and J. Shavlik. Tuffy: Scaling up statistical

inference in markov logic networks using an rdbms. VLDB, 2011.
[23] H. Poon and P. Domingos. Sound and efficient inference with

probabilistic and deterministic dependencies. In AAAI, 2006.
[24] M. Richardson and P. Domingos. Markov logic networks. Machine

learning, 2006.
[25] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning

first-order horn clauses from web text. In EMNLP, 2010.
[26] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental

knowledge base construction using deepdive. VLDB, 2015.
[27] S. Singh. Scaling MCMC Inference and Belief Propagation to Large,

Dense Graphical Models. PhD thesis, University of Massachusetts
Amherst, 2014.

[28] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Large-scale
cross-document coreference using distributed inference and hierarchical
models. In Proceedings of ACL-HLT, 2011.

[29] S. Singh, A. Subramanya, F. Pereira, and A. McCallum. Wikilinks: A
large-scale cross-document coreference corpus labeled via links to
wikipedia. University of Massachusetts, Amherst, Tech. Rep., 2012.

[30] M. L. Wick and A. McCallum. Query-aware mcmc. In NIPS, 2011.
[31] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic

taxonomy for text understanding. In SIGMOD, 2012.
[32] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In NSDI,
2012.

[33] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, 2010.

[34] C. Zhang. DeepDive: A Data Management System for Automatic
Knowledge Base Construction. PhD thesis, UW-Madison, 2015.

[35] X. Zhou, Y. Chen, and D. Z. Wang. Archimedesone: Query processing
over probabilistic knowledge bases. VLDB, 2016.

	Introduction
	Probabilistic Knowledge Bases
	System Architecture

	Knowledge Expansion
	Query-Driven Inference
	UDA-GIST
	Experiments
	Result of Knowledge Expansion
	Result of Query-Driven Inference
	Result of UDA-GIST

	Related Work
	Conclusion
	References

